Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Malar J ; 23(1): 139, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720288

RESUMO

BACKGROUND: In 2021 and 2023, the World Health Organization approved RTS,S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (PfCSP), but polymorphisms in the gene raise concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission intensities in Mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country. METHODS: The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of Mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright's inbreeding coefficient (Fws), Wright's fixation index (FST), principal component analysis, nucleotide diversity, and Tajima's D were used to assess within-host parasite diversity, population structure and natural selection. RESULTS: Based on Fws (< 0.95), there was high polyclonality (ranging from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean FST = 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima's D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences revealed 50 different haplotypes (H_1 to H_50), with only 2% of sequences matching the 3D7 strain haplotype (H_50). Conversely, with the NF54 strain, the Pfcsp C-terminal sequences revealed 49 different haplotypes (H_1 to H_49), with only 0.4% of the sequences matching the NF54 strain (Hap_49). CONCLUSIONS: The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima's D values, consistent with balancing selection for variants within Th2R and Th3R regions. The study observed differences between the intended haplotypes incorporated into the design of RTS,S and R21 vaccines and those present in natural parasite populations. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.


Assuntos
Plasmodium falciparum , Polimorfismo Genético , Proteínas de Protozoários , Seleção Genética , Tanzânia , Proteínas de Protozoários/genética , Plasmodium falciparum/genética , Malária Falciparum/parasitologia , Humanos , Doenças Endêmicas , Pré-Escolar
2.
Sci Rep ; 14(1): 8158, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589477

RESUMO

Plasmodium falciparum with the histidine rich protein 2 gene (pfhrp2) deleted from its genome can escape diagnosis by HRP2-based rapid diagnostic tests (HRP2-RDTs). The World Health Organization (WHO) recommends switching to a non-HRP2 RDT for P. falciparum clinical case diagnosis when pfhrp2 deletion prevalence causes ≥ 5% of RDTs to return false negative results. Tanzania is a country of heterogenous P. falciparum transmission, with some regions approaching elimination and others at varying levels of control. In concordance with the current recommended WHO pfhrp2 deletion surveillance strategy, 100 health facilities encompassing 10 regions of Tanzania enrolled malaria-suspected patients between February and July 2021. Of 7863 persons of all ages enrolled and providing RDT result and blood sample, 3777 (48.0%) were positive by the national RDT testing for Plasmodium lactate dehydrogenase (pLDH) and/or HRP2. A second RDT testing specifically for the P. falciparum LDH (Pf-pLDH) antigen found 95 persons (2.5% of all RDT positives) were positive, though negative by the national RDT for HRP2, and were selected for pfhrp2 and pfhrp3 (pfhrp2/3) genotyping. Multiplex antigen detection by laboratory bead assay found 135/7847 (1.7%) of all blood samples positive for Plasmodium antigens but very low or no HRP2, and these were selected for genotyping as well. Of the samples selected for genotyping based on RDT or laboratory multiplex result, 158 were P. falciparum DNA positive, and 140 had sufficient DNA to be genotyped for pfhrp2/3. Most of these (125/140) were found to be pfhrp2+/pfhrp3+, with smaller numbers deleted for only pfhrp2 (n = 9) or only pfhrp3 (n = 6). No dual pfhrp2/3 deleted parasites were observed. This survey found that parasites with these gene deletions are rare in Tanzania, and estimated that 0.24% (95% confidence interval: 0.08% to 0.39%) of false-negative HRP2-RDTs for symptomatic persons were due to pfhrp2 deletions in this 2021 Tanzania survey. These data provide evidence for HRP2-based diagnostics as currently accurate for P. falciparum diagnosis in Tanzania.


Assuntos
Antígenos de Grupos Sanguíneos , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Deleção de Genes , Tanzânia/epidemiologia , Testes Diagnósticos de Rotina/métodos , Antígenos de Protozoários/genética , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Instalações de Saúde , DNA
3.
Parasit Vectors ; 17(1): 153, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519992

RESUMO

BACKGROUND: Recent studies point to the need to incorporate the detection of non-falciparum species into malaria surveillance activities in sub-Saharan Africa, where 95% of the world's malaria cases occur. Although malaria caused by infection with Plasmodium falciparum is typically more severe than malaria caused by the non-falciparum Plasmodium species P. malariae, P. ovale spp. and P. vivax, the latter may be more challenging to diagnose, treat, control and ultimately eliminate. The prevalence of non-falciparum species throughout sub-Saharan Africa is poorly defined. Tanzania has geographical heterogeneity in transmission levels but an overall high malaria burden. METHODS: To estimate the prevalence of malaria species in Mainland Tanzania, we randomly selected 1428 samples from 6005 asymptomatic isolates collected in previous cross-sectional community surveys across four regions and analyzed these by quantitative PCR to detect and identify the Plasmodium species. RESULTS: Plasmodium falciparum was the most prevalent species in all samples, with P. malariae and P. ovale spp. detected at a lower prevalence (< 5%) in all four regions; P. vivax was not detected in any sample. CONCLUSIONS: The results of this study indicate that malaria elimination efforts in Tanzania will need to account for and enhance surveillance of these non-falciparum species.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Infecções Assintomáticas/epidemiologia , Estudos Transversais , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Plasmodium falciparum , Plasmodium malariae , Prevalência , Tanzânia/epidemiologia
4.
Malar J ; 23(1): 71, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461239

RESUMO

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Assuntos
Antimaláricos , Artemisininas , Carrubicina/análogos & derivados , Malária Falciparum , Humanos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Tanzânia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/epidemiologia , Biomarcadores , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
5.
medRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38343796

RESUMO

Background: In 2021 and 2023, the World Health Organization approved RTS, S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (Pfcsp) but polymorphisms in this gene raises concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission in mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country. Methods: The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright's inbreeding coefficient (Fws), Wright's fixation index (FST), principal component analysis, nucleotide diversity, and Tajima's D were used to assess within-host parasite diversity, population structure and natural selection. Results: Based on Fws (< 0.95), there was high polyclonality (ranged from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean FST= 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima's D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences had 50 different haplotypes (H_1 to H_50) and only 2% of sequences matched the 3D7 strain haplotype (H_50). Conclusions: The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima's D values for parasite populations, consistent with balancing selection for variants within Th2R and Th3R regions. This data is consistent with other studies conducted across Africa and worldwide, which demonstrate low 3D7 haplotypes and little population structure. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.

6.
medRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352311

RESUMO

Background: Artemisinin-based combination therapies (ACTs) are the recommended antimalarial drugs for the treatment of uncomplicated malaria. The recent emergence of artemisinin partial resistance (ART-R) in Rwanda, Uganda and Eritrea is of great concern. In Tanzania, a nationwide molecular malaria surveillance in 2021 showed a high prevalence of the Kelch13 (K13) 561H mutation in Plasmodium falciparum from the north-western region, close to the border with Rwanda and Uganda. This study was conducted in 2022 to evaluate the efficacy of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) for the treatment of uncomplicated falciparum malaria and to confirm the presence of ART-R in Tanzania. Methods: This single-arm study evaluated the efficacy of AL and ASAQ in eligible children aged six months to 10 years at Bukangara Dispensary in Karagwe District, Kagera Region. Clinical and parasitological responses were monitored for 28 days according to standard WHO protocol. Mutations in K13 gene and extended haplotypes with these mutations were analysed using Sanger and whole genome sequencing data, respectively. Findings: 176 children (88 in each AL and ASAQ group) were enrolled and all achieved the defined outcomes. PCR-corrected adequate clinical and parasitological response (ACPR) was 98.3% (95% CI: 90.8-100) and 100.0% (95% CI: 95.8-100) for AL and ASAQ, respectively. Parasitaemia on day 3 was observed in 11/88 (12.5%) and 17/88 (19.3%) in the AL and ASAQ groups, respectively. The half-life of parasitaemia was significantly higher (>6.5 hrs) in patients with parasitaemia on day 3 and/or mutations in K13 gene at enrolment. Most patients with parasitaemia on day 3 (8/11 = 72.7% in the AL group and 10/17 = 58.8% in the ASAQ group) had 561H mutation at enrolment. The parasites with K13 mutations were not similar to those from south-east Asia and Rwanda, but had the same core haplotype of a new 561H haplotype reported in Kagera in 2021. Interpretation: These findings confirm the presence of ART-R in Tanzania. A context-specific strategy to respond to artemisinin partial resistance is urgently needed. Although both AL and ASAQ showed high efficacy, increased vigilance for reduced efficacy of these ACTs and detection of ART-R in other parts of the country is critical.

7.
J Infect Dis ; 229(4): 959-968, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992117

RESUMO

BACKGROUND: Recent data indicate that non-Plasmodium falciparum species may be more prevalent than thought in sub-Saharan Africa. Although Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax are less severe than P. falciparum, treatment and control are more challenging, and their geographic distributions are not well characterized. METHODS: We randomly selected 3284 of 12 845 samples collected from cross-sectional surveys in 100 health facilities across 10 regions of Mainland Tanzania and performed quantitative real-time PCR to determine presence and parasitemia of each malaria species. RESULTS: P. falciparum was most prevalent, but P. malariae and P. ovale were found in all but 1 region, with high levels (>5%) of P. ovale in 7 regions. The highest P. malariae positivity rate was 4.5% in Mara and 8 regions had positivity rates ≥1%. We only detected 3 P. vivax infections, all in Kilimanjaro. While most nonfalciparum malaria-positive samples were coinfected with P. falciparum, 23.6% (n = 13 of 55) of P. malariae and 14.7% (n = 24 of 163) of P. ovale spp. were monoinfections. CONCLUSIONS: P. falciparum remains by far the largest threat, but our data indicate that malaria elimination efforts in Tanzania will require increased surveillance and improved understanding of the biology of nonfalciparum species.


Assuntos
Malária Falciparum , Malária , Humanos , Tanzânia/epidemiologia , Estudos Transversais , Malária/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium malariae/genética
8.
medRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37986920

RESUMO

Background: Emergence of artemisinin partial resistance (ART-R) in Plasmodium falciparum is a growing threat to the efficacy of artemisinin combination therapies (ACT) and the efforts for malaria elimination. The emergence of Plasmodium falciparum Kelch13 (K13) R561H in Rwanda raised concern about the impact in neighboring Tanzania. In addition, regional concern over resistance affecting sulfadoxine-pyrimethamine (SP), which is used for chemoprevention strategies, is high. Methods: To enhance longitudinal monitoring, the Molecular Surveillance of Malaria in Tanzania (MSMT) project was launched in 2020 with the goal of assessing and mapping antimalarial resistance. Community and clinic samples were assessed for resistance polymorphisms using a molecular inversion probe platform. Findings: Genotyping of 6,278 samples collected countrywide in 2021 revealed a focus of K13 561H mutants in northwestern Tanzania (Kagera) with prevalence of 7.7% (50/649). A small number of 561H mutants (about 1%) were found as far as 800 km away in Tabora, Manyara, and Njombe. Genomic analysis suggests some of these parasites are highly related to isolates collected in Rwanda in 2015, supporting regional spread of 561H. However, a novel haplotype was also observed, likely indicating a second origin in the region. Other validated resistance polymorphisms (622I and 675V) were also identified. A focus of high sulfadoxine-pyrimethamine drug resistance was also identified in Kagera with a prevalence of dihydrofolate reductase 164L of 15% (80/526). Interpretation: These findings demonstrate the K13 561H mutation is entrenched in the region and that multiple origins of ART-R, similar as to what was seen in Southeast Asia, have occurred. Mutations associated with high levels of SP resistance are increasing. These results raise concerns about the long-term efficacy of artemisinin and chemoprevention antimalarials in the region. Funding: This study was funded by the Bill and Melinda Gates Foundation and the National Institutes of Health.

9.
medRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790396

RESUMO

Recent data indicate that non- Plasmodium falciparum species may be more prevalent than previously realized in sub-Saharan Africa, the region where 95% of the world's malaria cases occur. Although Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax are generally less severe than P. falciparum , treatment and control are more challenging, and their geographic distributions are not well characterized. In order to characterize the distribution of malaria species in Mainland Tanzania (which has a high burden and geographically heterogeneous transmission levels), we randomly selected 3,284 samples from 12,845 samples to determine presence and parasitemia of different malaria species. The samples were collected from cross-sectional surveys in 100 health facilities across ten regions and analyzed via quantitative real-time PCR to characterize regional positivity rates for each species. P. falciparum was most prevalent, but P. malariae and P. ovale were found in all regions except Dar es Salaam, with high levels (>5%) of P. ovale in seven regions (70%). The highest positivity rate of P. malariae was 4.5% in Mara region and eight regions (80%) had positivity rates ≥1%. We also detected three P. vivax infections in the very low-transmission Kilimanjaro region. While most samples that tested positive for non-falciparum malaria were co-infected with P. falciparum , 23.6% (n = 13/55) of P. malariae and 14.7% (n = 24/163) of P. ovale spp. samples were mono-infections. P. falciparum remains by far the largest threat, but our data indicate that malaria elimination efforts in Tanzania will require increased surveillance and improved understanding of the biology of non-falciparum species.

10.
medRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234751

RESUMO

Recent studies point to the need to incorporate non-falciparum species detection into malaria surveillance activities in sub-Saharan Africa, where 95% of malaria cases occur. Although Plasmodium falciparum infection is typically more severe, diagnosis, treatment, and control for P. malariae, P. ovale spp., and P. vivax may be more challenging. The prevalence of these species throughout sub-Saharan Africa is poorly defined. Tanzania has geographically heterogeneous transmission levels but an overall high malaria burden. In order to estimate the prevalence of malaria species in Mainland Tanzania, 1,428 samples were randomly selected from 6,005 asymptomatic isolates collected in cross-sectional community surveys across four regions and analyzed via qPCR to detect each Plasmodium species. P. falciparum was most prevalent, with P. malariae and P. ovale spp. detected at lower prevalence (<5%) in all four regions. P. vivax was not detected. Malaria elimination efforts in Tanzania will need to account for these non-falciparum species.

11.
Malar J ; 21(1): 361, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457087

RESUMO

BACKGROUND: Malaria rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum histidine-rich protein 2 (HRP2) antigen are widely used for detection of active infection with this parasite and are the only practical malaria diagnostic test in some endemic settings. External validation of RDT results from field surveys can confirm appropriate RDT performance. METHODS: A community-based cross-sectional survey was conducted between July and November 2017 enrolling participants of all ages in households from 15 villages in four border regions of Tanzania: Geita, Kigoma, Mtwara and Ruvuma. All participants had an RDT performed in the field and provided a blood sample for later laboratory multiplex antigen detection of HRP2. In assessing the continuous HRP2 levels in participant blood versus RDT result, dose-response logistic regression provided quantitative estimates for HRP2 limit of detection (LOD). RESULTS: From the 15 study villages, 6941 persons were enrolled that had a RDT at time of enrollment and provided a DBS for later laboratory antigen detection. RDT positive prevalence for the HRP2 band by village ranged from 20.0 to 43.6%, but the magnitude of this prevalence did not have an effect on the estimated LOD of RDTs utilized in different villages. Overall, HRP2 single-target tests had a lower LOD at the 95% probability of positive RDT (4.3 ng/mL; 95% CI 3.4-5.4) when compared to pLDH/HRP2 dual target tests (5.4 ng/mL; 4.5-6.3), though this difference was not significant. With the exception of one village, all other 14 villages (93.3%) showed RDT LOD estimates at 90% probability of positive RDT between 0.5 and 12.0 ng/mL. CONCLUSIONS: Both HRP2-only and pLDH/HRP2 combo RDTs utilized in a 2017 Tanzania cross-sectional survey of border regions generally performed well, and reliably detected HRP2 antigen in the low ng/mL range. Though single target tests had lower levels of HRP2 detection, both tests were within similar ranges among the 15 villages. Comparison of quantitative HRP2 detection limits among study sites can help interpret RDT testing results when generating population prevalence estimates for malaria infection.


Assuntos
Histidina , Malária , Humanos , Testes Diagnósticos de Rotina , Estudos Transversais , Tanzânia/epidemiologia
12.
Front Cell Infect Microbiol ; 12: 757844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909968

RESUMO

Recent developments in molecular biology and genomics have revolutionized biology and medicine mainly in the developed world. The application of next generation sequencing (NGS) and CRISPR-Cas tools is now poised to support endemic countries in the detection, monitoring and control of endemic diseases and future epidemics, as well as with emerging and re-emerging pathogens. Most low and middle income countries (LMICs) with the highest burden of infectious diseases still largely lack the capacity to generate and perform bioinformatic analysis of genomic data. These countries have also not deployed tools based on CRISPR-Cas technologies. For LMICs including Tanzania, it is critical to focus not only on the process of generation and analysis of data generated using such tools, but also on the utilization of the findings for policy and decision making. Here we discuss the promise and challenges of NGS and CRISPR-Cas in the context of malaria as Africa moves towards malaria elimination. These innovative tools are urgently needed to strengthen the current diagnostic and surveillance systems. We discuss ongoing efforts to deploy these tools for malaria detection and molecular surveillance highlighting potential opportunities presented by these innovative technologies as well as challenges in adopting them. Their deployment will also offer an opportunity to broadly build in-country capacity in pathogen genomics and bioinformatics, and to effectively engage with multiple stakeholders as well as policy makers, overcoming current workforce and infrastructure challenges. Overall, these ongoing initiatives will build the malaria molecular surveillance capacity of African researchers and their institutions, and allow them to generate genomics data and perform bioinformatics analysis in-country in order to provide critical information that will be used for real-time policy and decision-making to support malaria elimination on the continent.


Assuntos
Doenças Transmissíveis , Malária , Sistemas CRISPR-Cas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Malária/diagnóstico , Malária/epidemiologia , Malária/prevenção & controle , Tanzânia
13.
Malar J ; 19(1): 391, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148255

RESUMO

BACKGROUND: Histidine-rich protein 2 (HRP2)-based malaria rapid diagnostic tests (RDTs) are effective and widely used for the detection of wild-type Plasmodium falciparum infections. Although recent studies have reported false negative HRP2 RDT results due to pfhrp2 and pfhrp3 gene deletions in different countries, there is a paucity of data on the deletions of these genes in Tanzania. METHODS: A community-based cross-sectional survey was conducted between July and November 2017 in four regions: Geita, Kigoma, Mtwara and Ruvuma. All participants had microscopy and RDT performed in the field and provided a blood sample for laboratory multiplex antigen detection (for Plasmodium lactate dehydrogenase, aldolase, and P. falciparum HRP2). Samples showing RDT false negativity or aberrant relationship of HRP2 to pan-Plasmodium antigens were genotyped to detect the presence/absence of pfhrp2/3 genes. RESULTS: Of all samples screened by the multiplex antigen assay (n = 7543), 2417 (32.0%) were positive for any Plasmodium antigens while 5126 (68.0%) were negative for all antigens. The vast majority of the antigen positive samples contained HRP2 (2411, 99.8%), but 6 (0.2%) had only pLDH and/or aldolase without HRP2. Overall, 13 samples had an atypical relationship between a pan-Plasmodium antigen and HRP2, but were positive by PCR. An additional 16 samples with negative HRP2 RDT results but P. falciparum positive by microscopy were also chosen for pfhrp2/3 genotyping. The summation of false negative RDT results and laboratory antigen results provided 35 total samples with confirmed P. falciparum DNA for pfhrp2/3 genotyping. Of the 35 samples, 4 (11.4%) failed to consistently amplify positive control genes; pfmsp1 and pfmsp2 and were excluded from the analysis. The pfhrp2 and pfhrp3 genes were successfully amplified in the remaining 31 (88.6%) samples, confirming an absence of deletions in these genes. CONCLUSIONS: This study provides evidence that P. falciparum parasites in the study area have no deletions of both pfhrp2 and pfhrp3 genes. Although single gene deletions could have been missed by the multiplex antigen assay, the findings support the continued use of HRP2-based RDTs in Tanzania for routine malaria diagnosis. There is a need for the surveillance to monitor the status of pfhrp2 and/or pfhrp3 deletions in the future.


Assuntos
Antígenos de Protozoários/genética , Testes Diagnósticos de Rotina/estatística & dados numéricos , Deleção de Genes , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Prevalência , Tanzânia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA